Home About Research Education Services News Donate Contact

Institute of Neural Regeneration & Tissue Engineering

 

Designing 3D Neural Tissue

 

Novel Advancements in Three-Dimensional Neural Tissue Engineering and Regenerative Medicine [Research Article in PubMed]

Brief Summary: Neurological diseases and injuries present some of the greatest challenges in modern medicine, often causing irreversible and lifelong burdens in the people whom they afflict. These diagnoses have devastating consequences on millions of people each year, and yet there are currently no therapies or interventions that can repair the structure of neural circuits and restore neural tissue function in the brain and spinal cord. Despite the challenges of overcoming these limitations, there are many new approaches under development that hold much promise. Neural tissue engineering aims to restore and influence the function of damaged or diseased neural tissue generally through the use of stem cells and biomaterials. In this paper, several new 3D tissue constructs and designs are described for functional reconstruction of neural architecture. With the use of induced pluripotent stem cells or induced neuronal cells, these 3D constructs could then be studied as regional models of the central nervous system or could one day be implemented as autologous grafts into damaged sites of the nervous system in order to restore neural function, particularly for damaged sites of spinal cord, areas of stroke infarction, tumor resection sites, peripheral nerve injuries, or areas of neurodegeneration.

  

-------------------

References:

McMurtrey RJ. Novel Advancements in Three-Dimensional Neural Tissue Engineering and Regenerative Medicine. Neural Regeneration Research. 2015 Mar; 10(3):352-354. doi: 10.4103/1673-5374.153674 PMID: 25878573 arXiv:1504.00698

McMurtrey RJ. Patterned and Functionalized Nanofiber Scaffolds in 3-Dimensional Hydrogel Constructs Enhance Neurite Outgrowth and Directional Control. J. Neural Eng. 11 (2014) 066009 doi:10.1088/1741-2560/11/6/066009 PMID: 25358624 arXiv:1501.01338

McMurtrey RJ. Analytic Models of Oxygen and Nutrient Diffusion, Metabolism Dynamics, and Architecture Optimization in Three-Dimensional Tissue Constructs with Applications and Insights in Cerebral Organoids. Tissue Engineering Part C. doi: 10.1089/ten.TEC.2015.0375 PMID: 26650970 arXiv:1512.06475

Also see EurekAlert News Summary

-------------------

Copyright © 2015 Institute of Neural Regeneration & Tissue Engineering. All Rights Reserved.

 

Back to Education